Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
1.
Int J Equity Health ; 22(1): 55, 2023 03 30.
Article Dans Anglais | MEDLINE | ID: covidwho-2259770

Résumé

BACKGROUND: Addressing persistent and pervasive health inequities is a global moral imperative, which has been highlighted and magnified by the societal and health impacts of the COVID-19 pandemic. Observational studies can aid our understanding of the impact of health and structural oppression based on the intersection of gender, race, ethnicity, age and other factors, as they frequently collect this data. However, the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guideline, does not provide guidance related to reporting of health equity. The goal of this project is to develop a STROBE-Equity reporting guideline extension. METHODS: We assembled a diverse team across multiple domains, including gender, age, ethnicity, Indigenous background, disciplines, geographies, lived experience of health inequity and decision-making organizations. Using an inclusive, integrated knowledge translation approach, we will implement a five-phase plan which will include: (1) assessing the reporting of health equity in published observational studies, (2) seeking wide international feedback on items to improve reporting of health equity, (3) establishing consensus amongst knowledge users and researchers, (4) evaluating in partnership with Indigenous contributors the relevance to Indigenous peoples who have globally experienced the oppressive legacy of colonization, and (5) widely disseminating and seeking endorsement from relevant knowledge users. We will seek input from external collaborators using social media, mailing lists and other communication channels. DISCUSSION: Achieving global imperatives such as the Sustainable Development Goals (e.g., SDG 10 Reduced inequalities, SDG 3 Good health and wellbeing) requires advancing health equity in research. The implementation of the STROBE-Equity guidelines will enable a better awareness and understanding of health inequities through better reporting. We will broadly disseminate the reporting guideline with tools to enable adoption and use by journal editors, authors, and funding agencies, using diverse strategies tailored to specific audiences.


Sujets)
Inégalités en matière de santé , Études observationnelles comme sujet , Justice sociale , Humains , COVID-19 , Pandémies , Plan de recherche , Développement durable , Peuples autochtones
2.
Front Immunol ; 13: 959697, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2141992

Résumé

Malaria has been hypothesized as a factor that may have reduced the severity of the COVID-19 pandemic in sub-Saharan Africa. To evaluate the effect of recent malaria on COVID-19 we assessed a subgroup of individuals participating in a longitudinal cohort COVID-19 serosurvey that were also undergoing intensive malaria monitoring as part of antimalarial vaccine trials during the 2020 transmission season in Mali. These communities experienced a high incidence of primarily asymptomatic or mild COVID-19 during 2020 and 2021. In 1314 individuals, 711 were parasitemic during the 2020 malaria transmission season; 442 were symptomatic with clinical malaria and 269 had asymptomatic infection. Presence of parasitemia was not associated with new COVID-19 seroconversion (29.7% (211/711) vs. 30.0% (181/603), p=0.9038) or with rates of reported symptomatic seroconversion during the malaria transmission season. In the subsequent dry season, prior parasitemia was not associated with new COVID-19 seroconversion (30.2% (133/441) vs. 31.2% (108/346), p=0.7499), with symptomatic seroconversion, or with reversion from seropositive to seronegative (prior parasitemia: 36.2% (64/177) vs. no parasitemia: 30.1% (37/119), p=0.3842). After excluding participants with asymptomatic infection, clinical malaria was also not associated with COVID-19 serostatus or symptomatic seroconversion when compared to participants with no parasitemia during the monitoring period. In communities with intense seasonal malaria and a high incidence of asymptomatic or mild COVID-19, we did not demonstrate a relationship between recent malaria and subsequent response to COVID-19. Lifetime exposure, rather than recent infection, may be responsible for any effect of malaria on COVID-19 severity.


Sujets)
COVID-19 , Paludisme , Production d'anticorps , Infections asymptomatiques/épidémiologie , COVID-19/épidémiologie , Humains , Paludisme/épidémiologie , Mali/épidémiologie , Pandémies , Parasitémie/épidémiologie
4.
Frontiers in immunology ; 13, 2022.
Article Dans Anglais | EuropePMC | ID: covidwho-1990176

Résumé

Malaria has been hypothesized as a factor that may have reduced the severity of the COVID-19 pandemic in sub-Saharan Africa. To evaluate the effect of recent malaria on COVID-19 we assessed a subgroup of individuals participating in a longitudinal cohort COVID-19 serosurvey that were also undergoing intensive malaria monitoring as part of antimalarial vaccine trials during the 2020 transmission season in Mali. These communities experienced a high incidence of primarily asymptomatic or mild COVID-19 during 2020 and 2021. In 1314 individuals, 711 were parasitemic during the 2020 malaria transmission season;442 were symptomatic with clinical malaria and 269 had asymptomatic infection. Presence of parasitemia was not associated with new COVID-19 seroconversion (29.7% (211/711) vs. 30.0% (181/603), p=0.9038) or with rates of reported symptomatic seroconversion during the malaria transmission season. In the subsequent dry season, prior parasitemia was not associated with new COVID-19 seroconversion (30.2% (133/441) vs. 31.2% (108/346), p=0.7499), with symptomatic seroconversion, or with reversion from seropositive to seronegative (prior parasitemia: 36.2% (64/177) vs. no parasitemia: 30.1% (37/119), p=0.3842). After excluding participants with asymptomatic infection, clinical malaria was also not associated with COVID-19 serostatus or symptomatic seroconversion when compared to participants with no parasitemia during the monitoring period. In communities with intense seasonal malaria and a high incidence of asymptomatic or mild COVID-19, we did not demonstrate a relationship between recent malaria and subsequent response to COVID-19. Lifetime exposure, rather than recent infection, may be responsible for any effect of malaria on COVID-19 severity.

5.
Clin Infect Dis ; 74(6): 1030-1038, 2022 03 23.
Article Dans Anglais | MEDLINE | ID: covidwho-1701582

Résumé

BACKGROUND: The extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and transmission in Mali and the surrounding region is not well understood. We aimed to estimate the cumulative incidence of SARS-CoV-2 in 3 communities and understand factors associated with infection. METHODS: Between July 2020 and January 2021, we collected blood samples and demographic, social, medical, and self-reported symptoms information from residents aged 6 months and older over 2 study visits. SARS-CoV-2 antibodies were measured using a highly specific 2-antigen enzyme-linked immunosorbent assay optimized for use in Mali. We calculated cumulative adjusted seroprevalence for each community and evaluated factors associated with serostatus at each visit by univariate and multivariate analysis. RESULTS: Overall, 94.8% (2533/2672) of participants completed both study visits. A total of 31.3% (837/2672) were aged <10 years, 27.6% (737/2672) were aged 10-17 years, and 41.1% (1098/2572) were aged ≥18 years. The cumulative SARS-CoV-2 exposure rate was 58.5% (95% confidence interval, 47.5-69.4). This varied between sites and was 73.4% in the urban community of Sotuba, 53.2% in the rural town of Bancoumana, and 37.1% in the rural village of Donéguébougou. Study site and increased age were associated with serostatus at both study visits. There was minimal difference in reported symptoms based on serostatus. CONCLUSIONS: The true extent of SARS-CoV-2 exposure in Mali is greater than previously reported and may now approach hypothetical "herd immunity" in urban areas. The epidemiology of the pandemic in the region may be primarily subclinical and within background illness rates.

6.
J Infect Dis ; 224(12): 2001-2009, 2021 12 15.
Article Dans Anglais | MEDLINE | ID: covidwho-1575924

Résumé

BACKGROUND: False positivity may hinder the utility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological tests in sub-Saharan Africa. METHODS: From 312 Malian samples collected before 2020, we measured antibodies to the commonly tested SARS-CoV-2 antigens and 4 other betacoronaviruses by enzyme-linked immunosorbent assay (ELISA). In a subset of samples, we assessed antibodies to a panel of Plasmodium falciparum antigens by suspension bead array and functional antiviral activity by SARS-CoV-2 pseudovirus neutralization assay. We then evaluated the performance of an ELISA using SARS-CoV-2 spike protein and receptor-binding domain developed in the United States using Malian positive and negative control samples. To optimize test performance, we compared single- and 2-antigen approaches using existing assay cutoffs and population-specific cutoffs. RESULTS: Background reactivity to SARS-CoV-2 antigens was common in prepandemic Malian samples. The SARS-CoV-2 reactivity varied between communities, increased with age, and correlated negligibly/weakly with other betacoronavirus and P falciparum antibodies. No prepandemic samples demonstrated functional activity. Regardless of the cutoffs applied, test specificity improved using a 2-antigen approach. Test performance was optimal using a 2-antigen assay with population-specific cutoffs (sensitivity, 73.9% [95% confidence interval {CI}, 51.6-89.8]; specificity, 99.4% [95% CI, 97.7-99.9]). CONCLUSIONS: We have addressed the problem of SARS-CoV-2 seroassay performance in Africa by using a 2-antigen assay with cutoffs defined by performance in the target population.


Sujets)
Anticorps antiviraux/sang , COVID-19/épidémiologie , SARS-CoV-2/immunologie , Glycoprotéine de spicule des coronavirus/immunologie , Adulte , COVID-19/sang , Test ELISA , Humains , Immunoglobuline G , Mali/épidémiologie , Sensibilité et spécificité , Glycoprotéine de spicule des coronavirus/composition chimique
SÉLECTION CITATIONS
Détails de la recherche